О проблемах малопараметрических уравнений состояния

Петрик Галина Георгиевна ИПГ ДНЦ РАН

galina_petrik@mail.ru

УС в ИПГ и...

- УС, группа А.Р. Базаева (раньше малопараметрические, сейчас полиномиальные)
- УС, Махач Н. Магомедов и молодые (на основе ММВ центральные потенциалы Ми(n-m), 4 параметра))
- УС, Рамазан М. (фракталы)
- УС, Абдулагатов И.
- УС, Петрик (ФОКУСы,
- малопараметрические
- новая модель)
- Москва, ОИВТРАН (В.Е. Фортов; Фокин Л.Р., *Филиппов Л.П.*), Новосибирск (Каплун А.Б., Мартынец В.Г.), Донецк (Локтионов И.К.), Калининград (Герасимов А.А.), Казань, Санкт-Петербург Рыковы), Курск (Неручев), Ковров, Махачкала

самое знаменитое малопараметрическое УС

УС Ван-дер-Ваальса ДВА ЮБИЛЕЯ

УС ВДВ – было 100 лет! -1973г.

Институт физики Даг ФАН СССР Институт проблем геотермии ДНЦ РАН

УС ВДВ - будет 150 лет! - 2023г

(А в этом году – ему 145)

Между двумя юбилеями

- Можно сказать, что вся моя «академическая» жизнь прошла под знаком модели Ван-дер-Ваальса. (а это больше, чем УС, т.к. включает молекулярные представления).
- Первая половина состояла из поисков на молекулярном уровне, вторая состоит из поисков решения проблем термодинамического уровня.

О возможностях простой модели при решении проблем малопараметрических уравнений состояния

Петрик Г.Г. ИПГ ДНЦ РАН

galina_petrik@mail.ru

От моделирования ММВ – к ФОКУСам

- Начав конкретную работу в новом направлении, о котором наш шеф узнал в Новосибирске на юбилейной конференции, посвященной 100-летию УС ВДВ, последние годы я занимаюсь проблемами УС, многие из которых называют УС вдв-типа.
- Время летит, я не уверена, что застану конференцию, посвященную 150-летнему юбилею знаменитого уравнения. Но! пользуясь тем, что в этом году ему 145 и возможностью выступить, хотела бы кратко осветить те проблемы, с которыми пришлось и приходится сталкиваться и решать на двух уровнях при построении простой молекулярно-термодинамической модели (термин Путилова, который заменяет конструкцию «УС, основанные на молекулярной модели»). Я в своих работах давно называю их физически обоснованные уравнения состояния. Многие эти УС кубические. Объединив все вместе, (по первым буквам) имеем ФОКУС.

Несколько слов о проблемах молекулярного уровня, которые привели меня к проблемам ФОКУСа

- Применение в теплофизических исследованиях методов компьютерного моделирования-МД и МК —основано на задании потенциалов, которые моделируют энергию взаимодействия молекул. Проблема получить новый и предложить способ выбора оптимального. Литература тех-80-х лет отразила активные многочисленные попытки ее решения. Их анализ вывел меня на модель сферических оболочек.
- Системный подход привел к идее искать наиболее общую характеристику объекта, которая формирует МП. Самая простая из реалистичных модель сферических оболочек. Для нее удалось найти такой МИФ (жесткость оболочки) и выстроить модель. (Здесь я пересеклась с известным физиком ЛПФ, из МГУ и Махачем М.)
- Первая часть работы связана именно с ММВ ПК, особые точки, их координаты. Расчет параметров, выбор МП-аналогов в разных семействах. Результаты опубликованы в трех больших статьях в ЖФХ.

Выбор ПК-аналогов

молекулярный уровень

- Имеются различные модели ММВ:
- МП в виде математических функций
- ПК их геометрическое представление
- По совпадению факторов формы различных ПК находим аналоги

От ММВ к УС

- Далее удалось выйти на прогноз критических параметров веществ из многоатомных молекул на основе молекулярной информации. Критическая температура и объем были рассчитаны на основе связи их с координатами точек перегиба ММ-кривых. (на эту работу есть несколько ссылок в работах В.Е. Фортова)
- После того, как была установлена связь молекулярного уровня с критическими параметрами вещества, логично было заняться проблемами моделирования свойств веществ, т.е. проблемами УС
- Анализ ситуации выявил ее полное подобие с той, что имеет место на молекулярном уровне. Отличие в том, что эмпирических УС предложено гораздо больше —на порядки —чем потенциалов.

Проблемы те же - Получение простого физически обоснованного уравнения состояния (УС) и выбор оптимального среди известных

- Особо интересны в этом отношении малопараметрические УС.
- Мы выделяем два множества подобных УС.
- Первое малопараметрические УС вандерваальсова (вдв)-типа, связь которых с микроуровнем весьма слаба. Это основной их недостаток, который означает, что они существуют как эмпирические, несвязанные математические модели.
- Вторая группа УС получена независимо от идей ван-дер-Ваальса (ВдВ) на основе самой простой молекулярной модели взаимодействующих точечных центров (ВТЦ). Впервые все параметры УС ВТЦ имеют смысл и связаны с проявлением сил межмолекулярного взаимодействия.
- Возможности новой модели таковы, что многие УС вдв-типа могут быть включены в ее рамки и представлены как физически обоснованные УС, принадлежащие одному семейству. При этом разрешается ряд проблем и вопросов.

Ключевые слова

- Малопараметрические УС
- УС ван-дер-ваальсового (вдв-) типа
- Когнитивные проблемы УС (смысл вкладов и параметров)
- Самая простая модель взаимодействующие точечные центры (ВТЦ) и ее расчетно- аналитические возможности. Семейства УС.
- Включение в модель ВТЦ УС вдв-типа и др. семейств (Мартина,...).
 - Абдукция

Уравнения состояния. Тренды

- За полтора века сотни УС сформировали два тренда:
- малопараметрические УС (до 10, 15 параметров) и многоконстантные УС (до 100, 150 параметров)
- **Ho!** простое увеличение числа подгоночных параметров УС само по себе не ведет к новому знанию. В то же время только на этой основе можно решить проблему получения и выбора оптимального УС.
- Решение сложной задачи логично начать с анализа простых малопараметрических уравнений (от 2 до 5 параметров)
- Большую часть их составляют кубические по объему УС вдвтипа. Основной недостаток непроявленная связь с микроуровнем. Наша задача недостаток ликвидировать, превратить их в физически обоснованные кубические уравнения состояния (ФОКУСы)

Уравнения состояния ван-дер-ваальсового типа (систематизация)

$$P = \frac{RT}{V - b} - \frac{a}{V^2}$$
 - 1873 (0.375) - Ван-дер-Ваальс

$$P = \frac{RT}{V} \left(1 + \frac{b}{V} \right) - \frac{a}{V^2}$$

Группа 1 a/V2 =idem

-Лоренц, 1881 (2)

$$P = \frac{RT}{(V - b + \frac{c}{V^2 + d})} - \frac{a}{V^2}$$

- Больцман, Мах, 1899 (3)

$$P = \frac{RT}{V - b} \left(1 + \frac{c}{VT^{3.5}} \right) - \frac{a}{V^2}$$

-Вукалович, Новиков, 1939 (3)

$$P = \frac{RT}{V} \left(\frac{1 + y + y^2 - y^3}{(1 - y)^3} \right) - \frac{a}{V^2}$$

-Карнахан, Старлинг, 1972 (2

$$P = \frac{RT}{V} \left(1 + \frac{c}{V - b} \right) - \frac{a}{V^2}$$

-Каплун, Мешалкин, 2001 (3)

Группа 2 RT/((V-b)=idem

$$P = \frac{RT}{V - b} - \frac{a}{\left(V + c\right)^2}$$

$$P = \frac{RT}{V - b} - \frac{a}{(V - c)^2}$$

$$P = \frac{RT}{V - b} - \frac{a}{V(V + b)}$$

$$P = \frac{RT}{V - b} - \frac{a}{V(V + b) + b(V - b)}$$

$$P = \frac{RT}{V - h} - \frac{a}{V^2 + c}$$

$$P = \frac{RT}{V - b} - \frac{a}{V^2 + bcV + b^2(c - 1)}$$

$$P = \frac{RT}{V - b} - \frac{a}{V(V + b) + c(V - b)}$$

$$P = \frac{RT}{V - b} - \frac{a}{(V + b)^2}$$

-Хейен, Патель, 1980; Тейа и др., 1986 (3)

Группа 3

$$P = \frac{RT}{V} - \frac{2a}{(V+b)^2}$$

$$P = \frac{RT}{V - b + c} - \frac{a}{(V - c)^2}$$

$$P = \frac{RT}{V - b} - \frac{a}{V(V - c)} + \frac{c}{V(V + b)(V - b)}$$

$$P = \frac{RT}{V} \left(\frac{2V+b}{2V-b} \right) - \frac{a}{V(V+b)}$$

-Ишикава, Чанг, Лу, 1980 ((2)

P=P((rep)+P(attr) -общий вид, два вклада в УС вдв-типа

«Доваальсова» ситуация

$$P = \frac{RT}{V}$$
 - Клапейрон (1834)-Менделеев (1874) – УС идеального газа молекулярная модель —невзаимодействующие точечные центры

$$P = \frac{RT}{V - b}$$
 - Дюпре (1869); Абель, Нобль – УС с коволюмом молекулярная модель – невзаимодействующие жесткие сферы

Проблемы и вопросы к УС вдв-типа

- 0. Дилемма первого вклада RT/(V-b) УС вдв-типа
- 1. «Проблема третьего параметра» (смысл!?) К чему ведет его появление в УС?
- 2. Остаются ли молекулярные модели УС модификаций такими же, как у ван-дер-Ваальса? (сохраняется ли смысл параметров а и b ?)
- 3.Чем объяснить, что несущественные изменения формы УС ведут к значительному улучшению описания свойств? (УС Р-Квонга)
- 4. Почему среди простых УС отсутствуют уравнения, дающие экспериментальные значения критического фактора сжимаемости (КФС) Zc?
- 5. Почему значения КФС, связанные с УС, должны быть больше их экспериментальных значений (на 20-25%)?

вопросы без ответов

- 6. Одинаков ли смысл и каковы корректные значения параметра b в различных УС? (Праузнитц к УС Р-Кв)
- 7. Являются ли параметры УС независимыми?
- 8. Чему отвечает условие постоянства параметров?
- 9. Как УС (структура, форма вкладов, смысл и значения параметров) связано с молекулярной моделью?
- 10. Почему УС ВдВ хуже описывает св-ва разреженного газа, а лучше св-ва тверд. тела вблизи т. плавления ? (Кипнис, Явелов)
- 11.Как выбрать (по каким критериям) наиболее оптимальный набор параметров для общего кубического УС? (Эбботт) Почему набор величин, имеющих смысл –КФС, b, Bc не дает оптимальных УС в отличие от «бессмысленного набора» трех чисел математической модели?
- При обычном подходе к УС вдв-типа (как эмпирическим модификациям, не связанным с молекулярной информацией) ответы получить не удается. Согласно методу абдукции требуется новая гипотеза (модель). Сравним две модели

Самая *простая модель* (молекулярная модель и УС на ее основе)

- ТОЧЕЧНЫЕ ЦЕНТРЫ (отсутствие собственных пространственных характеристик у модели объекта; модель взаимодействия центральные потенциалы (Ми (n-m));
- УС невзаимодействующих ТЦ (УС Клапейрона-Менделеева, УС идеального газа)

$$P = \frac{RT}{V}$$

- Общее УС на основе модели взаимодействующих ТЦ (ВТЦ)
 - отсутствует

Простая модель (молекулярная модель и УС на ее основе)

- Жесткие сферы (собственные пространственные характеристики –форма и размер; модель взаимодействия -псевдо центральные потенциалы Кихары, сферичеких оболочек);
- УС невзаимодействующих сфер (УС с коволюмом Дюпре, Абель, Нобль)
- Общее УС на основе модели взаимодействующих жестких сфер отсутствует

$$P = \frac{RT}{V - b}$$

Сравнение ситуаций для двух моделей

• На этом *сходство* ситуаций заканчивается.

Отличие

- для модели жестких сфер имеется УС Ван-дер-Ваальса и множество УС вдв-типа -его несвязанные эмпирические модификации
- Подобные уравнения для модели ВТЦ отсутствуют.
- Наша цель УС ВТЦ. Мы исследуем возможности простейшей молекулярно-термодинамической модели и представляем здесь часть результатов.
- Но прежде проведем анализ модели ван-дер-Ваальса.

Модель Ван-дер-Ваальса и УС вдв-типа дилемма первого вклада

- Оригинал, 1873: молекулы-жесткие сферы. Очень слабое притяжение (не влияющее на трансляцию). Об отталкивании не упоминалось. Цель УС учесть наличие собственного объема объекта. Первый вклад (УС с коволюмом) это учитывает. Параметры: b= 4vm*Na поправка на объем молекул (атрибут), а когезионный (атрибут?) притяжение.
- Современные представления: первый вклад отталкивание, второй притяжение. Параметры: b, a –(по ВДВ);

c — c

21

УС ВТЦ (алгоритм получения)

• 1.**осн. допущение - молек. уровень**: пара жестко отталкивающихся ТЦ, находящихся на расстоянии r=d, равнозначна паре невзаимодействующих жестких сфер диаметра d.

1

• 2. термод. уровень - этому отвечает переход от системы невзаимодействующих ТЦ (УС идеального газа) к системе ТЦ с жестким отталкиванием, что в свою очередь равнозначно системе невзаимодействующих жестких сфер (УС с коволюмом)

$$\frac{RT}{V} \longrightarrow \frac{RT}{V} + \Delta P(repul) = \frac{RT}{V - b}$$

Алгоритм (продолжение)

3. вклад, связанный с силами жесткого отталкивания

$$\Delta P(repul) = \frac{RTb}{V(V-b)} \qquad \frac{RT\Delta V(rep)}{V(V-\Delta V(rep))} = \frac{RT\Delta V_f(rep)}{V_f(no/int)V_f(rep)}$$

УС –система ТЦ с жестким отталкиванием

$$P = \frac{RT}{V} + \frac{RTb^h}{V(V - b^h)}$$
 bh

4. вклад, связанный с силами притяжения (на основе подобия форм)

$$\frac{RTc}{V(V+c)} \qquad \frac{a(T,V)}{V(V+c)} \qquad \frac{RTa}{V(V+c)}$$

Ч1. УС ВТЦ (жесткое отталкивание и оптимизированное притяжение ТЦ)

$$P = \frac{RT}{V_f \left(PC / no / \text{int} \right)} + \frac{RT\Delta V_f \left(rep \right)}{V_f \left(no / \text{int} \right) V_f \left(rep \right)} - \frac{a}{V_f \left(no / \text{int} \right) V_f \left(attr \right)}$$

• УС ВТЦ (три вклада) - эквивалентная запись

$$P = \frac{RT}{V} + \frac{RTb^{ES}}{V(V - b^{ES})} - \frac{a}{V(V + c)}$$

с и b - изменения доступного для движения ТЦ объема V системы в результате действия сил притяжения и отталкивания, -c=-ΔV(прит. ТЦ), b=ΔV(отт.ТЦ), коэффициент a введен, чтобы учесть отличия в характере проявления этих сил.

Управляющий параметр х модели ВТЦ

Смысл параметров дает возможность ввести параметр х=c/b, в котором проявляется соотношение влияния сил притяжения и отталкивания между ТЦ в отношении доступного для движения объема.

Стандартные условия в критической точке дают систему уравнений, для которой было получено общее решение в случае, когда параметры b, c=const.

Параметры приведенного УС как функции управляющего параметра х

$$\beta = \frac{1}{\chi} \left(\sqrt[3]{(1+\chi)} - 1 \right) \qquad \sigma = \left(\sqrt[3]{(1+\chi)} - 1 \right)$$

$$\alpha = \frac{\chi^2}{(\sqrt[3]{(\chi+1)}(\chi-1) + 2\chi + 1)(\sqrt[3]{\chi+1} - 1)}$$

$$Z_C = \frac{\chi}{\sqrt[3]{(\chi+1)}(\chi-1) + 2\chi + 1}$$

Трехпараметрическое УС ВТЦ

Однопараметрическое семейство УС ВТЦ $\pi = \pi(\varphi, \tau, \chi)$

(явная связь с проблемами подобия и O3CC)

Однопараметрический закон соответственных состояний

Полученный результат для УС ВТЦ смыкается с установленным:

O3CC

$$Z = Z(\tau, \varphi, a)$$

а – ОКТП (по давл. насыщенных паров)

Питцер

Филиппов

Ридель

$$a_{\omega} \equiv -\lg \pi - 1$$

$$A=100\pi$$

$$\alpha \equiv \frac{d \ln \pi}{d \ln \tau}$$
 при т \rightarrow 1

С молекулярным уровнем явно связать их авторам не удалось

$$a_{\omega} = 3.5851 - 12.422Z_{C}(\chi)$$

$$\lg A = 18.697Z_{C}(\chi) - 4.790$$

$$\alpha_{R} = 23.1776 - 61.08Z_{C}(\chi)$$

Проблемы управляющего параметра модели ВТЦ

- Управляющий параметр можно рассматривать как подгоночный. Но мы реализуем альтернативный путь и ищем информацию о нем на двух уровнях
- 1. Возможные значения параметра х и как их найти
- 2.О связи х с молекулярным уровнем
- 3. Можно ли подключить к анализу о нем информацию, накопленную в литературе по УС вдвтипа? Как это сделать?
- 5. Можно ли подключить к анализу информацию, полученную нами на молекулярном уровне для модели сферических оболочек? Как это сделать?

- •Спектр соотношений между проявлением сил притяжения и отталкивания в отношении доступного объема, когда они меняются (по отдельности) от очень слабых до очень сильных, предположительно может быть весьма широк
- •. Допустим, что значения фактора х изменяются в интервале от нуля до ста.
- •По полученным формулам были проведены расчеты. Семейство включает

• УС с реалистичными значениями КФС

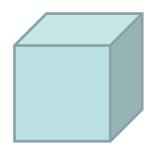
•(это отдельная большая проблема, включающая проблему параметра b)

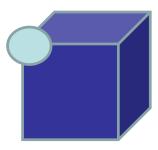
χ	0	0.5	1	1.5	2	2.5	3	3.5	4	5	6	10	100
β	0.333	0.29	0.26	0.24	0.22	0.207	0.196	0.186	0.17 7	0.163	0.15	0.122	0.03
1/β	3	3.44	3.85	4.2	4.54	4.82	5.109	5.376	5.62	6.13	6.58	8.17	27.7
$Z_{\rm C}$	0.375	0.35	0.33	0.32	0.31	0.302	0.295	0.29	0.28	0.274	0.266	0.244	0.15

$$V_{c} = (1/\beta) b$$
.

Об управляющем параметре модели

- Рассмотрим отношение параметров с/b в двух случаях – для одного моля и отдельного объекта
- Запишем параметры *b* и *c* в виде сумм средних изменений, приходящихся на один М/О (допустив, что они равны между собой):

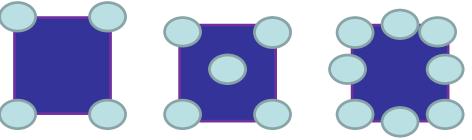

$$b = \sum \langle b_i \rangle = N_A b_{mol}$$


$$c = \sum \langle c_i \rangle = N_A c_{mol}$$

- Отношения параметров на обоих уровнях совпадают:
- $\chi = c/b = cmol/bmol$.

Возможная оценка (прогноз) упр. параметра

- Параметры с и b УС ВТЦ –изменения объема, доступного для одного М/О.
- Самая простая ситуация М/О (ТЦ) в идеальной решетке.
- Пока ТСЦ не взаимодействует, удельный объем *v* для него полностью доступен. При наличии взаимодействия ситуация меняется. В результате действия двух сил притяжения и отталкивания ТЦ каждому из них обеспечивается проявление эффективного собственного объема (ЭСО =(4/3)π(r/2)3), наличие которого меняет величину доступного для движения М/О пространства.


Оценка упр. параметра

• простая кубическая: v2=v0+8*7/8 bmol=v0+7bmol;7b/b=7

• объемноцентрированная: v1=v0-(8*1/8+1) bmol=v0-2bmol 7b/2b=3.5

• гранецентрированная: *v2=v0+(8*7/8+6*1/2) bmol=v0+10bmol*

10b/4b=2.5

- Для реального вещества эти отношения будут отличаться от указанных идеальных предельных значений.
- В то же время, многие теории жидкого состояния базируются на сходстве структур вещества в твердом и жидком состоянии.
 Потому можно предположить, что реальные значения будут достаточно близки к прогнозным.

О соотношении сил в особых точках ПК

 Потенциальная энергия U (потенциал Ми (m-n)) через координаты точек минимума и перегиба ПКИ

$$U(r) = \frac{a}{r^n} - \frac{b}{r^m}$$

$$U(r) = \frac{\varepsilon}{(n-m)} \left[m \left(\frac{r_m}{r} \right)^n - n \left(\frac{r_m}{r} \right)^m \right]$$

$$U_{n-m}(r) = \frac{\varepsilon_p}{n(n+1) - m(m+1)} (m(m+1) \left(\frac{r}{p}\right)^n - n(n+1) \left(\frac{r}{p}\right)^m)$$

Соотношение сил ММВ в точке перегиба ПК

(потенциал Ми (m-n), m=6)

$$F(r) = \frac{\varepsilon_p mn}{\left(\left(n(n+1) - m(m+1) \right) \right)} \left((m+1) \frac{r_p^n}{r^{n+1}} - (n+1) \frac{r_p^m}{r^{m+1}} \right) \qquad F = -\frac{dU}{dr}$$

n	12	13	17	18	20	22	27	34	48
ς	1.86	2	2.57	2.7	3	3.28	4	5	7

Предварительный вывод:

Значения параметра реалистичны

О включении в модель ВТЦ УС вдвтипа (важно!)

- Многие УС вдв-типа могут быть включены в модель ВТЦ. (Особенно легко это сделать для большой группы УС, первый вклад которых равен RT/(V-b). Возвращаем ему смысл УС с коволюмом, и используем соотношение, отвечающее переходу от невзаимодействующих сфер к ТЦ с жестким отталкиванием: $\frac{RT}{V-b} = \frac{RT}{V} + \frac{RTb^h}{V(V-b^h)}$
- При этом из несвязанных УС, не все параметры которых имеют смысл, они превращаются в УС однопараметрического семейства, где все параметры смысл имеют. Эти УС можно сравнивать по значению упр. параметра, по тому, как соотносятся проявления сил.
- Это открывает возможность осмысления и обобщения результатов многочисленных расчетных работ.

«главные» УС вдв-типа в модели ВТЦ

• УС ВТЦ при условии

$$P = \frac{RT}{V} + \frac{RTb}{V(V-b)} - \frac{a}{V(V+\chi b)}$$

- X = const
- УС ван-дер-Ваальса:
- $c = 0, \chi = 0;$
- УС Редлиха Квонга:
- $c=b, \chi=1.$

$$P = \frac{RT}{V} + \frac{RTb}{V(V-b)} - \frac{a}{V(V+0*b)}$$

$$P = \frac{RT}{V} + \frac{RTb}{V(V-b)} - \frac{a}{V(V+1*b)}$$

Для выражения, которое входит во все формулы, введем обозначение: ³√1+ χ = θ.
 Было найдено, что параметры УС ВТЦ в виде функций переменной θ имеют еще более компактный вид:

•
$$\sigma = \theta - 1$$
; $\beta = \frac{1}{1 + \theta + \theta^2}$; $\alpha = \frac{(1 + \theta + \theta^2)^2}{(1 + \theta)^3}$; $Z_C = \frac{1 + \theta + \theta^2}{(1 + \theta)^3}$

 Очевидно, параметр θ также оказывается управляющим для модели ВТЦ. КФС в интервале 0.304-0.259 определяется управляющим параметром θ из интервала 1.5-2 (χ: 2.5-7).

Об установлении физического смысла параметра в

$$\theta^{3} = 1 + \chi = 1 + \left| \frac{\Delta V_{f}(attr)}{\Delta V_{f}(rep \wedge attr)} \right| = 1 + \left| \frac{\Delta V_{ex}(attr)}{\Delta V_{ex}(rep \wedge attr)} \right| = \frac{\left| \Delta V_{ex}(rep \wedge attr) \right| + \left| \Delta V_{ex}(attr) \right|}{\left| \Delta V_{ex}(rep \wedge attr) \right|} = \frac{\Delta V_{ex}(only/rep) - \Delta V_{ex}(attr) + \Delta V_{ex}(attr)}{\Delta V_{ex}(rep \wedge attr)} = \frac{b^{h}}{b^{ES}} \qquad \theta = (1 + \chi)^{1/3} = \frac{d^{h}}{d^{ES}}$$

управляющий фактор θ молекулярного уровня модели ВТЦ равен отношению двух характерных размеров - диаметров двух сферических эффективных собственных объемов. Один из них проявляет ТЦ, когда в системе действует только жесткое отталкивание и второй – результирующий эффективный собственный объем, который проявляется у ТЦ как результат действия обеих сил – отталкивания и притяжения.

О смысле и поиске управляющего параметра

• Физический смысл нового управляющего параметра удалось найти и установить:

$$\theta = d^{et} / d^{eff}$$

- (Отношение двух эффективных размеров ТЦ, которые он проявляет в результате взаимодействия только отталкивания и результирующего совместного отталкивания и притяжения)
- Как найти этот параметр, не считая подгоночным?
- Как связать его с молекулярной информацией?

6. О связи с результатами моделирования на молекулярном уровне

• систематизация полученных результатов позволяет связать найденные нами и другими авторами управляющие факторы модели в следующей цепочке - иерархии:

$$(\beta_a^m, n) \to g_S \to \theta \to (\chi) \to Z_C \leftrightarrow K_C \to B$$

Степень перекрывания β атомов в молекуле (подгоночный параметр квантово-механической модели из атомов-оболочек) совместно с числом атомов, определяющих характерный размер «молекулы» (ее «длину»), определяет «жесткость» gs объекта, его максимально-информационноемкий фактор (МИФ). Именно МИФ, с одной стороны как наиболее общая характеристика объекта должен проявиться в фундаментальных свойствах вещества (в первую очередь – критических параметров – КК и КФС), а с другой стороны как фактор, формирующий характер межчастичного взаимодействия, (потенциальную и силовую кривые) - должен проявиться в определении параметра θ , связанного с двумя характерными размерами объекта, являющимися результатом проявления сил взаимодействия между двумя модельными молекулами. Значение параметра в дает возможность вычислить управляющий параметр х, критический фактор сжимаемости Zc (или критический коэффициент Кc) и ОКТП А и В, являющиеся управляющими параметрами различных термических уравнений состояния:

$$(\beta_a^m, n) \to g_s^* \to g_s \to A \to Z_c \qquad \theta \to (\chi) \to Z_c$$

Оценка прогнозируемого интервала КФС

- Предположим, что степень перекрывания атомных оболочек может меняться от 0 до 50%, βам=(0 1/2). Оценим для разных значений *пl*, атомов, «формирующих длину», интервалы, в которых могут изменяться факторы *gs* модельных объектов и ОКТП вещества A.
- Для оценки интервалов КФС применим формулу (1) Филиппова для КП А, в которую мы ввели жесткость оболочки gs. Результаты расчетов приведены в таблице.

nl	g _{s*} ((0) –(1/2)	gs	A(0) –A (1/2)	Zc(0)- Zc(1/2)
2	1-2	1.3-2.5	2.67- 3.45	0.27- 0.285
3	0.5-1	0.7-1.3	1.5- 2.67	0.265- 0.279
4	1/3-2/3	0.5-0.9	0.7- 2.02	0.248- 0.275

Заключение

• Анализ представленных результатов позволяет сделать вывод о том, что наблюдаемый для большинства веществ интервал значений КФС Zc (0.3-0.25) определен внутренним устройством их молекул — в частности тем, насколько перекрыты в них атомные оболочки.

- Весьма важно найти зависимость между управляющими параметрами θ и gs*. Задание каждого из них приводит к возможности расчета КФС по приведенным в работе формулам.
- Однако если обратиться к смыслу параметров, то окажется, что связывать надо величины gS* и (θ -1).
 Весьма интересно, что их значения совпадают для ZC=0.276 – «самого среднего» значения КФС.

- Обе величины характеризуют приведенное отличие диаметров двух сферических объектов. Только в одном случае диаметры относятся к молекуле-оболочке и ее характеристикам, а в другом к молекуле—ТЦ и ее эффективным размерам, которые она приобретает в результате взаимодействия.
- Именно эта часть работы обосновывает фундаментальный вывод о возможности однозначно выбрать УС в однопараметрическом семействе.
- Выбор возможен, если найти значение управляющего параметра θ, определяющего все приведенные параметры УС.
- Рассчитать θ возможно, если будет известно значение степени перекрывания βам атомов в молекуле.
- На данном этапе мы задаем интервал значений βам=(0 -1/2) и получаем интервал – хотя уже и достаточно узкий для значений КФС и θ.
- Следующим шагом в конструировании модели должно стать включение в нее информации об устройстве атомов.

Ч2. Обобщение УС ВТЦ

• Общее кубическое уравнение (Эбботт,

числа
$$\mathbf{K}$$
 смысла не имеют)
$$P = \frac{RT}{V-b} - \frac{a(V-k_3b)}{(V-b)(V^2+k_1bV+k_2b^2)}$$

• УС ВТЦ при условии х ≠ const (числа к имеют смысл и связаны с двумя возможными для ТЦ типами движений – трансляция и колебания • $\chi = c/b = \kappa_1 + \kappa_2 b\rho$

$$P = \frac{RT}{V} + \frac{RTb}{V(V - b)} - \frac{a}{V(V + b(k_1 + k_2b/V))}$$

$$\beta^3(k_2 - k_1(k_2 + k_1)) - 3\beta^2(k_1 + k_2) - 3\beta + 1 = 0$$

Общее УС ВТЦ

$$P = \frac{RT}{V} + \frac{RTd}{V(V-b)} - \frac{a}{V(V+c)}$$

• V- объем системы, полностью доступный для ТЦ, когда между ними нет взаимодействия: $V=V_f(no/int)$. Все 4 параметра определяются проявлением сил взаимодействия. $b=\Delta v_{rep}$, $c=-\Delta V_{attr}$; $b\neq c$, b>0, c>0; параметр d фиксирует отличия в характере сил отталкивания: $(n\neq \infty)$, $d\geq b$ от «жесткосферного» $(n=\infty)$, d=b; параметр a фиксирует отличие характера сил притяжения $(m\neq n)$ от «реалистичного» характера сил отталкивания. Тот факт, что все параметры УС имеют физический смысл, позволил выявить ряд управляющих параметров, конкретные формы которых выделяют два «граничных» однопараметрических семейства уравнений.

«пограничные» семейства УС ВТЦ

- УС первого семейства –жесткое отталкивание, оптимизированное притяжение. $P = \frac{RT}{V} + \frac{RTb}{V(V-b)} \frac{a}{V(V+c)}$
- УС второго семейства силы притяжения слабы, как предполагалось в УС ВдВ (с=0), но силы отталкивания смягчены (подобно УС Карнахана и Старлинга) (*d>b*). Его можно рассматривать как обобщенное УС Ван-дер-Ваальса для ВТЦ.

$$P = \frac{RT}{V} + \frac{RTd}{V(V - b)} - \frac{a}{V^2}$$

Обобщение. Надежда на возможность стыковки модели ВТЦ с моделью сферических оболочек

- Переход на молекулярный уровень и найденный смысл управляющего параметра означает, что полученные для ВТЦ результаты могут быть объединены с теми, что мы получили, когда занимались проблемами моделирования межмолекулярных взаимодействий.
- Тогда удалось найти МИФ фактор, определяемый геометрическими характеристиками объекта, моделирующего многоатомную молекулу и показать, что именно он определяет характер взаимодействия, т.е. форму и параметры потенциала сферических оболочек.
- Есть надежда, что связь между этими управляющими параметрами поможет при получении новых более адекватных малопараметрических УС, в том числе общего УС для сфер. Подробности работы можно найти в наших публикациях на сайте www.csmos.ru.

Выбор УС-аналогов

термодинамический уровень

- Имеются УС, образующие несколько множеств (вдв-типа, Мартина, ВТЦ).
- УС одного множества имеют единую форму.
- Любое УС можно привести к виду УС наиболее обоснованного семейства.
- Переход определяет смысл всех параметров УС.

- 4 параметра общего ФОКУСа позволяют ввести несколько параметров, в которых сравниваются проявления силы притяжения и отталкивания между ТЦ в отношении свободного объема и в отношении конфигурационных вкладов в давление.
- По совпадению их выбираются УСаналоги.

Выбор УС ВТЦ для аргона

- Приведем ряд УС: (в скобках –значения КФС-характеристики УС)
 - ВДВ (0.375) Редлих-Квонг (0.333) Клаузиус (частн., 0.312) Пенг-Робинсон (0.3074) Харменс (0.2862). Продолжим ряд для аргона КФС =0.291 —он должен сравняться с характеристикой УС. По этому значению найдем управляющий параметр=3.3 и рассчитаем параметры УС

$$P_{R} = \frac{1}{Z_{c}} \left[\frac{\tau}{V_{R}} + \frac{\tau \beta}{V_{R}(V_{R} - \beta)} - \frac{\alpha}{V_{R}(V_{R} + \chi \beta)} \right] \qquad P_{R} = \frac{1}{0.291V_{R}} \left[1 + \frac{0.18973}{V_{R} - 0.18973} - \frac{1.53374}{V_{R} + 0.62615} \right]$$

Приведенное УС ВТЦ для критической изотермы

Приведем общее выражение новой «силовой» характеристики УС и формулу для расчета в критической точке:

$$\chi_{P} = \frac{\alpha}{\beta} \frac{\varphi - \beta}{\varphi + \chi \beta} \qquad \chi_{P} = \frac{\alpha}{\beta} \frac{1 - \beta}{1 + \chi \beta}$$

Критическая изотерма аргона. Расчет по двум УС ВТЦ и сравнение с УС-эталоном

$V_{_{ m R}}$	$P_{_{\!R}}\!(NBS)$	$P_{_{\!R}}$ (ВТЦ)	*	$\Delta P_R(rep)$	$\Delta P_{\scriptscriptstyle R}(attr)$	χ_p	**	P_{R} (ВТЦ)	Δ $P_{\!\scriptscriptstyle R}$, %
100	.03395	.03383	1	.002166	.015676	7.25	-0.03	.03390	0.144
20	.16209	.160326	1	.01092	.076540	7.0	-0.12	0.16069	0.86
5	.54073	.52415	1	.045194	.281512	6.2	-0.13	.52577	5.29
2.5	.83428	.80476	1	.09466	.508398	5.3	+0.49	0.76910	7.81
1.25	.99556	.98166	1	.209131	.851557	4.07	+0.37	0.9937	0.182
10/9	.99946	.99138	1	0.24159	.920601	3.8	+0.06	0.99926	0.020
1	1.0000	.99991	1	.27583	.984456	3.57	+0.29	.99934	0.066
10/11	1.0006	1.0129	1	0.31203	1.04369	3.34	+1.7	1.00078	0.017
10/12	1.0058	1.0359	1	0.35033	1.09870	3.14	+4.8	1.00524	0.055
10/14	1.0685	1.1383	1	0.43406	1.19816	2.76	+16.0	1.04644	2.206
10/16	1.3426	1.3370	1	0.52886	1.28535	2.43	+24.0	1.15495	13
10/18	2.1534	1.6963	1	0.63709	1.36247	2.14	+15.0	1.3656	36
1/2	4.0319	2.2691	1	0.76180	1.43116	1.88	-4.2		

Спасибо за внимание!

О различном смысле параметра *b* в разных УС. О единственности УС Ван-дер-Ваальса в модели жестких сфер и ВТЦ

• В ходе исследований УС ВТЦ возник важный вопрос.

•

- А не может ли быть так, что именно обращение в нуль третьего параметра *с* и придает параметрам *b* и *а* именно тот смысл, что вложил в них Ван-дер-Ваальс?
- Если же параметр *с≠0*, то смысл параметров *b* и *a*, скорее всего, должен измениться.
- Это заставляет сделать выбор между моделью молекулы в виде (пока и условно) жесткой сферы и УС с неопределенными параметрами и более простой моделью молекулы ТЦ и УС, где все параметры имеют смысл.
- Наш выбор очевиден это М/О в виде ТЦ и соответствующее УС ВТЦ.